An Incompressible Navier-Stokes Equations Solver on the GPU Using CUDA Master of Science Thesis in Complex Adaptive Systems

نویسنده

  • NIKLAS KARLSSON
چکیده

Graphics Processing Units (GPUs) have emerged as highly capable computational accelerators for scientific and engineering applications. Many reports claim orders of magnitude of speedup compared to traditional Central Processing Units (CPUs), and the interest for GPU computation is high in the computational world. In this thesis, the capability of using GPUs to accelerate the full computational chain of a 3D incompressible Navier-Stokes solver, including solvers and preconditioners for sparse linear systems as well as assembly routines for a finite volume discretization, has been evaluated. The CG, GMRES and BiCGStab iterative solvers have been implemented on the CUDA GPGPU platform and evaluated together with the Jacobi, and Least Square Polynomial preconditioners. A double precision Navier-Stokes solver has been implemented using CUDA, adopting a collocated cartesian grid, SIMPLEC pressure-velocity coupling scheme, and implicit time discretization. The CUDA GPU implementations of the iterative solvers and preconditioners and the Navier-Stokes solver were validated and evaluated against serial and parallel CPU implementations. For the iterative solvers, speedups of between six and thirteen were achieved against the MKL CPU library, and the implemented methods beats existing open source GPU implementations of equivalent methods. For the full Navier-Stokes solver, speedups of up to a factor twelve were achieved compared to an equivalent commercial CPU code when equivalent iterative solvers were used. A speedup of a factor two was achieved when a commercial Algebraic MultiGrid method was used to solve the pressure Poisson equation in the commercial CPU implementation. The bottleneck of the resulting implementation was found to be the solution of the pressure Poisson equation. It accounted for a significant part of the total execution time for large problems. The implemented assembly routines on the GPU were highly efficient. The combined execution time for these routines were negligible compared to the total execution time. The GPU has been assessed as a highly capable accelerator for the implemented methods. About an order of magnitude of speedups have been achieved for algorithms which can efficiently be implemented on the GPU.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows

Graphics processor units (GPU) that are traditionally designed for graphics rendering have emerged as massively-parallel "co-processors" to the central processing unit (CPU). Small-footprint desktop supercomputers with hundreds of cores that can deliver teraflops peak performance at the price of conventional workstations have been realized. A computational fluid dynamics (CFD) simulation capabi...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations

The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...

متن کامل

Implementation of a multigrid solver on a GPU for Stokes equations with strongly variable viscosity based on Matlab and CUDA

The Stokes equations are frequently used to simulate geodynamic processes, including mantle convection, lithospheric dynamics, lava flow, and among others. In this study, the multigrid (MG) method is adopted to solve Stokes and continuity equations with strongly temperature-dependent viscosity. By taking advantage of the enhanced computing power of graphics processing units (GPUs) and the new v...

متن کامل

Solving 3D incompressible Navier-Stokes equations on hybrid CPU/GPU systems

This paper describes a hybrid multicore/GPU solver for the incompressible Navier-Stokes equations with constant coefficients, discretized by the finite difference method. By applying the prediction-projection method, the Navier-Stokes equations are transformed into a combination of Helmholtzlike and Poisson equations for which we describe efficient solvers. As an extension of our previous paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013